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Abstract

Central-bank asset-purchase programmes can matter even in deep bond markets when investor demand is
inelastic. Using eMaxx holdings for 16,000 fixed-income funds matched with Refinitiv pricing and rating
data over 2016–2020, I estimate a nested-logit demand system to quantify how the ECB’s Asset Purchase
Programmes (APP) propagate across the euro-area bond market. I document two key mechanisms. First,
front-loading: when the ECB expands purchases, some funds accumulate targeted ISINs, reducing free
float and extracting a liquidity premium. Second, portfolio rebalancing: as purchase-eligible spreads
compress, funds with more flexible mandates shift into higher-yield, untargeted bonds, pushing their
prices up. Estimated price elasticities are low, implying sizeable price multipliers. Markets are imperfectly
segmented: sovereign bond purchases spill over to corporate prices. A counterfactual removing all ECB
holdings would lower average corporate-bond prices by about 25% and widen spreads by 280 basis points;
removing only corporate holdings still lowers prices by nearly 20%. Substitution is asymmetric: funds
substitute out of sovereigns far more easily than they substitute into corporates, consistent with mandate
rigidities. Overall, the results show that limits to arbitrage amplify the effects of quantitative easing,
and that a relatively small group of large funds plays a central role in transmitting ECB purchases to
non-targeted markets.



2.1 Introduction

In the wake of the sovereign debt crisis, the European Central Bank (ECB) has become one of the world’s
largest participants in the bond market, purchasing over €3 trillion in sovereign debt and hundreds of
billions in corporate and covered bonds. By 2022, ECB purchases accounted for roughly one-quarter of
the euro-area government bond market, and over a fifth of eligible corporate bonds1. These interventions
have fundamentally altered the structure of European debt markets, yet their precise impact remains hotly
debated.

Understanding the effects of large-scale asset purchases (LSAPs) is not straightforward. Bond yields,
liquidity, and issuance volumes are all equilibrium outcomes shaped by investor behavior, regulatory
mandates, and macroeconomic shocks. Event-study methodology ignores the long lags at which monetary
policy and over the counter markets operate, while estimation through macro aggregates such as bond
spreads or the amount of aggregate issuances is makes it difficult to establish causality, as issuances and
spreads can be stimulated by other components of the monetary policy and vary over the business cycle.

According to ECB’s own press releases, the objectives of the Public Sector Purchase Program (hence-
forth PSPP) are to stimulate the economy, to ensure price stability of public sectors bonds and avoid
market turmoil or dislocation, while the Corporate Sector Purchase Program (henceforth CSPP) aims to
pass through the stimulus directly to the corporate sector. Therefore, even though the ECB uses careful
language such as ”[We aim] to achieve market neutrality in order to avoid interfering with the market
price formation mechanism”, or ”the Eurosystem in general adheres to the principle of market neutrality
via a smooth and flexible implementation”, it is clear that the objectives of the Asset Purchase Programs
(henceforth APP) are threefold: First, they aim to increase the price level and lower the yield, creating
economic stimulus through lower issuance costs of bonds and a one time wealth effect for bond holders
at the onset/increase of purchases. Second, the purchases shall make holding bonds more palatable for
investors by reducing the volatility of the market through steady purchases while allowing for security
lending if liquidity becomes a problem. Third, the lower yields should increase the issuance of bonds,
stimulating the size bond market.

If asset supply is inelastic, large purchases must move prices, and the effects can spill over across
market segments. Moreover, the eventual impact on prices, liquidity, and new issuance depends crucially
on the demand elasticity of key market participants and the extent of portfolio rebalancing between
sovereign, corporate, and foreign bonds. A central empirical question is thus: How elastic is the demand
for euro-area bonds, and how does this elasticity shape the transmission of ECB asset purchases?
If markets are highly inelastic (because of segmented mandates, regulatory constraints, or limited arbitrage)
then even modest flows can have large and persistent effects on prices. In contrast, if investors are flexible
and view euro-area bonds as substitutable with other assets, the price effects of purchases are quickly
arbitraged away.

This paper provides new evidence on the transmission of ECB asset purchases through the lens of
investor demand inelasticity. Using eMaxx holdings for over 16,000 fixed-income funds matched with
transaction-level pricing and rating data from 2016 to 2020, I estimate a nested-logit demand system to
measure the elasticity of demand across euro-area bond categories and to quantify the pass-through of

1That the issue purchase limit for the ECB sits between 25% and 33% for public bond issuances, and is as large as 70% for
corporate bonds. Indeed a lot of corporate bonds are not traded after issuance, therefore requiring larger purchases of traded
bonds to reach the purchase target.
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ECB purchases across segments.
I document two core mechanisms through which ECB asset purchases propagate: First, when the

ECB expands purchases, some funds accumulate targeted bonds ahead of execution, reducing free float
and extracting a profit by selling the bonds back to the central bank. Then, as targeted spreads compress,
funds with more flexible mandates shift into higher-yield, untargeted bonds, transmitting price effects
across segments.

The estimated price elasticities are low, implying substantial price multipliers and sizeable spillovers
across markets. Sovereign purchases, for example, have detectable effects on corporate bond prices.
However, substitution is asymmetric: funds substitute in and out of sovereigns more easily than they
substitute into corporates, consistent with strong mandate rigidities. Counterfactual simulations show that
removing all ECB holdings would lower average corporate bond prices by about 25% (raising spreads by
280 basis points), while removing only corporate bond holdings would still depress prices by nearly 20%.
These magnitudes highlight that mandate segmentation plays a central role in amplifying the effects of
quantitative easing in European credit markets.

The relevance of demand inelasticity extends beyond retrospective evaluations of QE. The ECB has
recently committed to tilting its bond portfolio toward issuers with stronger climate performance: a shift
that raises the risk of outsized, possibly unintended price movements if investor demand is not sufficiently
elastic. In highly segmented markets, even moderate green tilts may lead to substantial spread changes
and create arbitrage opportunities for flexible funds. Thus, understanding the mechanics and limits of
portfolio rebalancing is crucial not only for evaluating past interventions but also for guiding the design
of future, more targeted asset purchase programs.

2.1.1 Relevant literature:

This paper pertains to three closely related strands of literature: the effects of central bank asset purchase
programs, imperfect arbitrage and market inelasticity, and demand system asset pricing.

Asset Purchase Programs:

There is a wide literature documenting that large scale asset purchases have a significant impact on
the spreads. Announcements and implementation of the ECB’s Corporate and Public Sector Purchase
Programmes (CSPP, PSPP) have led to substantial price and liquidity effects for targeted bonds, with
the strongest impacts for longer-maturity and lower-rated securities (Todorov, 2020; Arrata and Nguyen,
2017; Altavilla et al., 2021; Koijen et al., 2017; Cohen, 2022). Most of these effects are driven by changes
in the total stock of bonds held by the central bank (the “stock effect”), rather than the flow of purchases
at any given time (Sudo and Tanaka, 2021). This points to the value of demand system approaches for
measuring the impact of central bank interventions.

A running theme in the APP literature is the notion of portfolio rebalancing. As central bank
purchases lower yields on targeted securities, investors are expected to shift towards higher-yielding or
riskier assets to restore their optimal risk-return profiles. This includes both within-region and cross-
border reallocations (Albertazzi et al., 2018; Koijen et al., 2017; Fratzscher et al., 2018; Barroso et al.,
2016). However, there is comparatively little evidence of significant rebalancing between government and
corporate bonds, which suggests segmentation between these markets. Notably, if demand is inelastic,
even limited reallocations can have significant price effects for untargeted assets.
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The causal impact of QE on yields and the broader economy remains debated. Central bankers
generally report larger effects from QE than do academic studies, with the literature shaped by both data
access and institutional perspectives (Fabo et al., 2021). Recent research also questions the effectiveness
of asset purchases in stimulating real activity: increased issuance following QE episodes has often been
used for liquidity buffers, dividends, or share buybacks, rather than productive investment (Darmouni and
Siani, 2022; Cohen, 2022). Still, the presence of issuance premia means that price-elastic investors can
support bond markets in times of stress (Siani, 2022).

Contribution: I show that ECB asset purchases produce large equilibrium price effects consistent with
persistent market inelasticity. I also document that the price impact of purchases transmits to non-targeted
asset classes, and that there is a small but meaningful degree of mutual fund rebalancing between corporate
and government bonds.

Demand System Asset Pricing

A central insight of recent literature is that financial markets display inelasticity when demand shocks
cannot be perfectly arbitraged. This framework underpins the logic of quantitative easing: persistent price
effects from asset purchases require limits to arbitrage, beyond the pure wealth effect.

Early work (e.g., Gromb and Vayanos (2010)) highlights a range of frictions (risk aversion, leverage
and capital constraints, agency problems, short-selling costs) that inhibit arbitrage and allow demand
shocks to affect prices. Segmentation further amplifies these effects, as investors often face institutional
or regulatory barriers to reallocating across asset “habitats.” For example, Vayanos and Vila (2021)
demonstrate that risk-averse arbitrageurs with heterogeneous maturity preferences lead to persistent term
structure segmentation. The direct consequence is that in order to move long-term rates, central banks had
to intervene directly in the long-term market through large-scale asset purchases. Several recent papers
(Chaudhary et al. (2022), Bretscher et al. (2022), Sudo and Tanaka (2021)) confirm that bond market
segmentation is a root cause of demand inelasticity, The argument is grounded in the work of Kadlec and
McConnell (1994), Merton et al. (1987), who document the classic “index inclusion” effect in equities.

At a more granular level, fund mandates are a key source of inelasticity: investment funds face
hard constraints or slow adjustment in response to price changes. Gabaix and Koijen (2021) estimate
extremely low demand elasticities—on the order of 0.2—for major market participants, implying that
modest flows can produce outsized price moves (e.g., a 1$ demand shock induces a 5$ price change), a
sharp departure from traditional CAPM logic (Sharpe (1964)) but consistent with newer evidence (Koijen
and Yogo (2019)). Quantitative estimates of bond market inelasticity vary by methodology and sample,
with Bretscher et al. (2022) reporting market-wide elasticities around 3.7, and Chaudhary et al. (2022)
finding much lower values at the rating-portfolio level—consistent with lower substitutability at higher
aggregation.

Contribution: I quantify the price elasticity and segmentation of the European corporate bond mar-
ket, and document the asymmetric rigidity of mutual fund mandates by showing that they substitute
asymmetrically between sovereign and corporate bonds.

Imperfect Arbitrage and Inelastic Markets

Although it owes much to Rosen (1974), McFadden (1973), and Tobin (1969), this literature was kick-
started by the seminal work of Koijen and Yogo (2019). The central idea is that asset prices and market
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outcomes can be understood through a hedonic demand system, in which investors have explicit preferences
for asset characteristics. This approach enables the estimation of investor-level price elasticities and,
crucially, allows for market-wide counterfactuals on the impact of demand shocks.

The methodology has been applied to a range of questions. Koijen and Yogo (2020) decompose asset
price variation across currencies, equities, and debt. Koijen et al. (2020) find that hedge funds and small
active managers play a disproportionate role in equity price formation. Koijen et al. (2021b) examine
the portfolio rebalancing channel in QE, showing that price effects are dampened when foreign investors
are highly elastic. For insurance investors, Koijen and Yogo (2022) provide a theory of hedonic demand
rooted in access to leverage and low-beta preferences.

A key empirical challenge in demand estimation is instrumenting for asset prices, since prices are
endogenous to observed demand. There are currently three main instrumentation strategies in the literature:
mutual fund latent demand, mutual fund flows, and ad-hoc instruments. Latent demand instruments exploit
rigidities in mutual fund mandates (Koijen and Yogo (2019), Siani (2022), Bretscher et al. (2022)), using
the investment universe and fund wealth to proxy exogenous demand variation. Fund flow instruments
(Gabaix and Koijen (2021), van der Beck (2021), Huebner (2022)) rely on mutual fund inflows and
outflows, which generate plausibly exogenous shocks to asset demand, especially when residualized
against risk factors and fund characteristics. Ad-hoc instruments include central bank purchase targets
(Koijen et al. (2017)), dividend-induced trades (van der Beck (2022)), stable institutional holdings (Chen
et al. (2022)), and analyst-driven timing (Chaudhry (2022)). Most of these take a shift-share (Bartik) form,
but still require careful controls to justify conditional exogeneity (Goldsmith-Pinkham et al. (2020)).

One empirical complication is that demand system estimation can produce negative price elasticities,
especially when working with holdings instead of trades (due to mechanical wealth effects for buy-and-hold
investors). To address this, it is common to constrain elasticities to be non-negative for counterfactual
analysis (Koijen and Yogo (2019)). The debate on this point remains active: van der Beck (2022) argues
that only trades determine prices, while Huebner (2022) posits that negative elasticities help explain
momentum. In my own work, I estimate elasticities using both trades and holdings as a robustness check,
finding similar substitution patterns.

Contribution: I estimate a demand system for European corporate bond funds, which allows for
credible counterfactuals of Euro-area asset purchases and new estimates of both the price elasticities of
European mutual funds and the substitutability between corporate, sovereign, and local bonds.

2.1.2 Structure of the paper

The rest of the paper is organized as follows. Section 2.2 presents a stylized model of asset purchases in
segmented bond markets and derives empirical predictions. Section 2.3 describes the data sources and
construction of the main sample, and provides preliminary evidence on mandate rigidity and portfolio
rebalancing. Section 2.4 outlines the empirical strategy, including the demand system specification and
identification approach. Section 2.5 presents the main results: evidence of frontloading and mandate
flexibility, estimates of price elasticities and substitution parameters, and counterfactual simulations
quantifying the price impact of ECB purchases. Section 2.6 concludes and discusses avenues for future
research.
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2.2 A stylized model

To fix ideas, let us write down a stylised model of large-scale asset purchases in a setting where investors
have price impact.

2.2.1 Environment and primitives

Consider a market with a finite set of investors, indexed by 8, each endowed with wealth,8 . Investors may
allocate any portion of their wealth to a perpetual bond, which pays a constant coupon 2 and is subject
to a one-period default probability 0 < X < 1. When a bond defaults, it stops paying its coupon forever.
Investors have access to leverage at no cost.
The total free-float of the bond prior to intervention is denoted by (. A fraction X( of bonds is issued at
each period, which exactly offsets the flow of defaults. At time C = 0, the central bank announces a one-off
purchase of quantity 0 < @ < (, which is executed at C = 1. For simplicity, the central bank is assumed to
hold its purchase indefinitely. Investors are heterogeneous in their risk aversion, parametrized by _8 , and
are assumed to have mean-variance preferences. For convenience, define the aggregate risk-tolerance
wealth as ^ =

Õ
8
,8/_8 .

The box below summarizes the key primitives and timing of the model.

Primitives & Timing

2 Coupon paid each period

d Risk-free return (1 + d gross)

X One-period default probability (0 < X < 1)

( Free-float before intervention

@ One-off purchase by the central bank, executed at C = 1

^ Aggregate risk-tolerance wealth: ^ =
Õ
8
,8/_8

The sequence of events is as follows: at C = 0, the central bank announces its intended purchase; at
C = 1, the intervention is executed; for C � 2, the market continues in subsequent periods.

Investor Demand: The one-period return and variance of the perpetual are defined as

`(%) = (1 � X) (2 + %)
%

� 1 � d, f
2(%) = (1 � X)X

✓
2 + %

%

◆2
(2.1)

With mean-variance (MV) utility, investor 8 holds ⌘8 = ,8
_8

` (%)
f

2 (%)
Aggregating across all investors yields the following aggregate demand function:

� (%) =
^ %

⇥
(1 � X) (2 + %) � (1 + d)%

⇤
X(1 � X) (2 + %)2 . (2.2)
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2.2.2 Benchmark

In the absence of central bank intervention, equilibrium is determined by equating the aggregate demand
for the bond to the available free-float. The following proposition characterizes the equilibrium bond
price:

Proposition 3. The equilibrium price of the bond before intervention is

%
¢ =

2

^�
q
^

2�4^(X 1+d
1�X

2(X � 1
(2.3)

Proof. Set the aggregate demand equal to supply, that is ( = � (%) in (2.2). Let us introduce the
substitution H := 1 + 2

%
Rewriting the equilibrium condition in terms of H yields the quadratic equation:

(X

^

H
2 � H + 1 + d

1 � X

= 0,

whose only economically meaningful root is the minus root

H� = 1�
p

1�4(X (1+d)/^ (1�X )
2(X/^

Substituting back for % yields the closed-form expression for %¢ above.

Observe that an equilibrium price %
¢ exists if and only if ^ > ^min = 4(X(1 + d)/(1 � X), which is

the condition for the discriminant of the quadratic to be non-negative. The equilibrium price is thus
well-defined, and is bounded between two finite limits:

lim
^#^min

%
¢ =

2(1 � X)
1 + 2d + X

< lim
^"1

%
¢ =

2(1 � X)
d + X

< 1

2.2.3 Quantitative Easing Intervention

In order to compute the equilibrium price of the perpetual at the announcement of the purchase, we first
solve for the price of the bond after the central bank’s intervention.

Proposition 4 (Post-PurchasesPrice). The equilibrium price of the bond after intervention is given by

%1 =
2

^ �
q
^

2 � 4^(( � @)X 1+d
1�X

2(( � @)X � 1

(2.4)

Proof. Analogous to the pre-intervention case in proposition 3, but with ( � @ = � (%1).

From the post-intervention price, the price impact of the central bank’s purchase is given by:
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%1 � %
¢ =

2

^�
p
⇡ ((�@)

2((�@) X � 1
� 2

^�
p
⇡ (()

2(X � 1

with ⇡ (G) = ^
2 � 4^GX 1+d

1�X

,

and %1 � %
¢
> 0

While this expression is exact, it is more informative to consider the case of a small purchase @ ⌧ ( and
large aggregate risk tolerance ^. In this case, the price impact approximates to

%1 � %
¢ ⇡ (2+%¢)2

@X

2^

This approximation makes clear that the price impact is increasing in the purchase size @ and the bond’s
default risk X.

Given price %1, we can compute the equilibrium price at C = 0. Indeed, at C = 0 the float is ( but
investors anticipate %1.

Proposition 5 (Post-Announcement Price). Solving � (%0) = ( yields

%0 =
1 � X

1 + d

⇣
2 + %1

2

⌘�
1 + �

�
� :=

s
1 � 4(X(1 + d)

^(1 � X) (2.5)

Proof. The solution follows as in the benchmark, but accounting for the next period price is %1 in
place of % in the excess return and variance equations. The expected one-period excess return at price %0

(anticipating price %1 at C = 1) is

`(%0) = (1 � X) 2 + %1
%0

� 1 � d

And the variance is

f
2(%0) = (1 � X)X

✓
2 + %1
%0

◆2

We can then solve for %0 such that ( = � (%0 |%1) as in proposition. 3

From the post-announcement price, we can compute the price impact of the announcement as well as its
approximation for a small purchase @ ⌧ ( and large aggregate risk tolerance ^:

%0 � %
¢ =

⇣
1�X
1+d

⌘
2+%1

2 (1 + �) � %
¢ and %0 � %

¢ ⇡ 1�X
1+d

(2+%¢)2
@X

2^

Proposition 6 (Execution–Announcement Spread). The difference between the post-intervention and
pre-intervention (announcement-date) prices, or the execution–announcement spread, is given exactly by

%1 � %0 =
2

^�
p
⇡ ((�@)

2((�@) X � 1
�

⇣1 � X

1 + d

⌘
2 + %1

2 (1 + �)

where we have %1 > %0 > %
¢
> 0, as well as ⇡ (G) = ^

2 � 4^GX 1+d
1�X and � =

q
1 � 4(X (1+d)

^ (1�X ) .
For a small purchase @ ⌧ ( and large aggregate risk tolerance ^, the spread admits the following
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second-order approximation:

%1 � %0 ⇡ d + X

1 + d

X@

^

(2 + %
¢)2

2

From proposition 6, it is clear that the announcement-execution wedge is increasing in the risk-free
return d, in the default risk X, and in the size of the purchase @. This wedge allows arbitrageurs to profit
by front-loading the purchases, as shown in the next proposition.

Proposition 7 (Arbitrageurs). Suppose investors’ risk tolerance is uniformly distributed along : :=
,/_ ⇠ Uniform[0, 2^], so that aggregate risk tolerance is ^. Let

⌘
¢(:) = : 5

¢

, ⌘
0(:) = : 5̃

denote optimal holdings at the benchmark price %
¢ and at the announcement price %0 (anticipating

execution at %1), where
5
¢ =

`(%¢)
f

2(%¢) , 5̃ =
`%1 (%0)
f

2
%1
(%0)

.

Then there exists a unique cutoff
:̄ = ^

such that ⌘0( :̄) = ⌘
¢( :̄). Investors with : > :̄ increase their holdings at the announcement (“natural

arbitrageurs”), while those with : < :̄ reduce their bond exposure.

Assuming purchases by the central bank continuously push the price upwards, the aggregate trading profit
earned by the arbitrageurs is given by

⇧arb =
π

@

0
%exec(( � G) 3G � @%0

where the execution price for the remaining free-float � is

%exec(�) = 2

^�
q
^

2�4^� X 1+d
1�X

2�X � 1

For the explicit derivation and properties of ⇧arb, see Appendix 2.A.

⇧arb quantifies the round-trip profit from front-running the central bank’s intervention, with price
impact fully accounted for. It is always positive, and for a small purchase @ ⌧ ( and large aggregate risk
tolerance ^, arbitrageur profit admits the following second-order approximation:

⇧arb ⇡ d + X

2(1 + d)
X @

2

^

(2 + %
¢)2

2

Notably, arbitrageur profit increases quadratically with the size of the intervention.

2.2.4 Testable predictions

(i) Price impact of purchases: The model predicts that price impact is larger for bonds that are riskier
(higher X) and/or have lower aggregate risk-tolerance wealth (lower ^). Since corporate bonds tend to be
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both riskier (" X) and less liquid (# ^) than sovereigns, their prices should react more strongly to central
bank purchases.

(ii) Front-loading: Following the announcement of a purchase programme, we should observe an
immediate, positive shift in demand for the targeted bonds that is unexplained by fundamentals or time
trends, as risk-tolerant investors front-load the purchases of the central bank.

(iii) Mandate flexibility: The model predicts that investors with higher risk-bearing capacity (i.e.,
higher,/_) can opportunistically adjust their portfolio when there are arbitrage opportunities. In practice,
this implies that institutions with greater risk tolerance (high wealth, low risk aversion) will adjust their
portfolios more flexibly in response to central bank interventions, whereas more risk-averse or constrained
investors will adjust their holdings less.

2.3 Data

I recover data from two main data sources: the eMaxx database2, and the Refinitiv Data Platform software
suite. The scripts that I used in the data collection process are provided on my personal website. Details
on the construction of the dataset are also provided in the appendix. I complement the price data using the
WRDS and the TRACE bond prices databases. I further complement the data with the ECB’s Securities
Holdings Statistics (SHS), which is used to construct sector-level flows. I collected the data on holdings
of corporate bonds by Central Banks directly from the websites of the Fed, ECB and BoE.

I focus on the 2016–2020 period, as the quality of the pricing data decreases the further I look back
into the past.

2.3.1 eMaxx

The eMaxx database provides a granular view of the bond holdings portfolio of institutional investors.
The Europe database allows me to observe corporate, sovereign and other3 bond holdings. The US dataset
is limited to corporate bonds, so is therefore used mainly for estimating latent demand in that segment.
For each bond, I have data on maturity, coupon, currency, and both issue and issuer-level credit ratings
from all the major agencies. I use identifiers to link bonds to their issuer fundamentals, as described in
section 2.3.4.

2.3.2 Refinitiv Data Platform

Refinitiv provides a collection of APIs under the name of Eikon or Refinitiv Data Platform. Using these
APIs, I collect the prices (from quotes and transactions) and yields of the vast majority of the bonds in the
dataset. It also allows me to recover the price of equities. I take the average price over the month before
the reporting date as the price of the security for the period. When the average price is not available, I use

2The eMaxx database has been successively referred to as the Capital Access eMAXX database, the Lipper eMaxx database,
the Thomson-Reuters Lipper eMaxx database, or the Refinitiv eMaxx database, following the database acquisition and rebrandings.
In the interest of clarity, I refer to the database as the eMaxx database in the remainder of the paper.

3Including mortgage-backed securities (MBS), asset-backed securities (ABS), local and regional bonds.
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the price at the end of the reporting month. When a bond is missing a rating in the eMaxx database, I also
collect the ratings using Refinitiv’s API collection.

2.3.3 Complementary Data: Prices and ratings

I obtain complementary pricing data from the curated WRDS bond prices database, as well as the TRACE
database. I further augment the ratings data for US bonds using Mergent-FISD. When a rating is not
available for the issue, I use the issuer’s rating, as is standard in the literature (Koijen et al., 2021b)4.

2.3.4 Matching and data construction

To construct my main analysis dataset, I begin by matching security identifiers across multiple sources to
link bond characteristics, price data, and holdings. I start by importing mapping tables that link CUSIP,
ISIN, and Reuters Instrument Codes (RICs), including both preferred and non-preferred matches, and
perform a series of joins to maximize coverage. For each CUSIP, I prioritize preferred RIC matches where
available; otherwise, I use CUSIP then ISIN to match the data. After ensuring consistency between tables
and removing duplicates, I construct a master list of unique CUSIPs and associated ISINs.

Next, I sequentially merge quarterly security-level reference tables for European and U.S. markets
from the eMaxx database, covering 2016–2020 into unified panels with harmonized date and identifier
variables. I address missing or ambiguous coupon structures by recoding nonstandard entries as zero-
coupon or dropping them if no reliable rate is available. For each bond, I derive additional attributes, such
as floating-rate status and time-to-maturity, and merge ISIN and SEDOL codes to enable linkage with
external price sources.

To populate bond price and yield information, I merge the master security panel with price datasets
from Eikon and WRDS, using a hierarchical matching scheme: I first attempt to match by ISIN and month,
then fall back to CUSIP or RIC as needed, ensuring that each bond-month observation retains at least one
reliable price. I impute mid prices where only bid and ask are available, and exclude observations with
implausible prices (outside the range 10–300) unless a reliable implied yield calculation can be made. I
winsorize yields and spreads at the 1st and 99th percentiles to mitigate the influence of outliers.

I further merge credit ratings from Moody’s, Fitch, and S&P, harmonize rating scales to Moody’s
rating scale, and fill missing values where possible from issuer-level information or by carrying forward
previous ratings for the same bond. I assign default probabilities by interpolating published five-year
default rates by rating and sector using monotone splines.

The final dataset retains, for each bond-month, key variables including identifiers, price and yield
measures, spreads, ratings (with summary indicators for investment grade and default status), duration,
floating-rate status, time-to-maturity, sector, currency, and default probability. This panel is then saved
and subsequently merged with fund holdings data, ECB purchase records, and exchange rates as described
in subsequent sections.

4Some issuers, such as the country of Spain, will never submit issue ratings and only provide issuer ratings. When an issuer
issues a lot of interchangeable bonds with similar seniority, it makes sense for the issuer not to bother with specific issue ratings.
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2.3.5 Preliminary evidence on mandates

Investment mandates refer to the explicit contractual guidelines specified in mutual funds’ statutes and
prospectuses, which restrict investment to a defined set of securities.5 Table 2.1 reports the persistence of
bond holdings across quarters: the average institution held 84% of its bonds from the previous quarter,
and 87% over the prior twelve quarters. This high degree of persistence indicates that institutions maintain
a highly stable investment universe, which is the first element of a fund’s mandate. The second element,
portfolio tilt, describes the relative quantities invested across bonds. Table 2.2 demonstrates that key
aspects of portfolio tilt, including the modal credit rating, duration, share of investment-grade and floating-
rate bonds, and the corporate-to-sovereign composition, are also remarkably stable over time. Together,
these findings suggest that institutions are constrained in both their investment universe and their portfolio
tilt, consistent with the definition of investment mandates in the literature.

Average 1 2 3 4 5 6 7 8 9 10 11 12
Simple Insurance Other 91.2 % 91.7 % 92.2 % 92.4 % 92.5 % 92.5 % 92.4 % 92.4 % 92.4 % 92.3 % 92.0 % 92.2 %
Simple Life Insurance 91.8 % 92.3 % 92.7 % 93.0 % 93.1 % 93.1 % 93.1 % 93.1 % 93.1 % 93.1 % 92.7 % 92.7 %
Simple Mutual Funds 84.1 % 85.0 % 85.3 % 85.7 % 85.8 % 86.1 % 86.3 % 86.3 % 86.4 % 86.2 % 86.1 % 86.1 %
Simple Other 86.7 % 87.9 % 88.6 % 88.9 % 89.0 % 89.2 % 89.3 % 89.6 % 89.6 % 89.6 % 89.5 % 89.6 %
Simple Small M Funds 81.8 % 83.1 % 83.7 % 84.0 % 84.3 % 84.6 % 85.0 % 85.1 % 85.1 % 85.0 % 84.9 % 84.8 %
Simple Specialized Funds 79.1 % 81.2 % 82.1 % 82.5 % 83.0 % 83.3 % 83.8 % 83.9 % 84.0 % 84.0 % 83.9 % 83.7 %
Simple Pension 84.1 % 84.7 % 85.0 % 85.2 % 85.3 % 85.4 % 85.5 % 85.4 % 85.1 % 84.7 % 84.4 % 84.4 %
Simple Average 84.6 % 85.7 % 86.4 % 86.8 % 87.1 % 87.4 % 87.7 % 87.8 % 87.9 % 87.9 % 87.7 % 87.8 %
Weighted Insurance Other 90.7 % 91.2 % 91.4 % 91.7 % 91.8 % 91.7 % 91.7 % 91.7 % 91.7 % 91.7 % 91.2 % 91.3 %
Weighted Life Insurance 93.5 % 94.2 % 94.4 % 94.7 % 94.7 % 94.6 % 94.6 % 94.6 % 94.5 % 94.4 % 94.1 % 94.2 %
Weighted Mutual Funds 88.7 % 89.1 % 89.2 % 89.3 % 89.3 % 89.6 % 89.7 % 89.7 % 90.0 % 89.8 % 89.8 % 90.0 %
Weighted Other 88.8 % 89.5 % 89.9 % 90.0 % 90.1 % 90.3 % 90.5 % 90.8 % 90.8 % 90.7 % 90.8 % 90.7 %
Weighted Small M Funds 83.7 % 84.5 % 84.8 % 85.0 % 85.1 % 85.5 % 85.6 % 85.6 % 85.7 % 85.4 % 85.2 % 85.1 %
Weighted Specialized Funds 81.6 % 82.5 % 82.7 % 83.1 % 83.4 % 83.6 % 83.4 % 83.3 % 84.3 % 83.8 % 86.3 % 84.5 %
Weighted Pension 88.2 % 88.6 % 88.8 % 88.9 % 89.1 % 89.2 % 89.2 % 89.3 % 89.2 % 89.0 % 89.1 % 89.1 %
Weighted Average 91.3 % 91.9 % 92.1 % 92.4 % 92.4 % 92.5 % 92.5 % 92.5 % 92.6 % 92.5 % 92.3 % 92.5 %

Table 2.1: Persistence of Bond Holdings (%) across quarters
The columns display the share of bonds held in quarter& that were held in at any point during the = previous quarters. The first part of the table presents the raw average across funds, while the

second part of the table presents the average statistics across funds, weighted by fund wealth.

Average Stable modal rating � duration � inv-grade � floating � corporate
Simple Mutual Funds 80.1 % 3.1 % 2.7 % 1.1 % 0.3 %
Simple Small M Funds 75.6 % 5.9 % 3.8 % 1.7 % 0.5 %
Simple OTHER 73.7 % 6.0 % 4.8 % 3.0 % 1.1 %
Simple Insurance 83.1 % 3.8 % 1.4 % 0.5 % 1.5 %
Simple All funds 77.3 % 4.9 % 3.3 % 1.5 % 0.7 %
Weighted Mutual Funds 82.8 % 2.4 % 1.5 % 0.7 % 0.0 %
Weighted Small M Funds 81.2 % 2.9 % 2.3 % 1.0 % 0.2 %
Weighted OTHER 77.5 % 3.1 % 2.6 % 1.8 % 0.2 %
Weighted Insurance 93.1 % 2.5 % 0.9 % 0.2 % 0.0 %
Weighted All funds 89.1 % 2.5 % 1.2 % 0.4 % 0.0 %

Table 2.2: Stability of Portfolio Tilt (%, Q-to-Q averages)
The stable modal rating share column reports the share of funds that keep the same modal rating (AAA,AA+, etc.) QoQ. The QoQ changes
statistics report the average across funds of the absolute value relative change in the statistic of interest. Duration reflects the duration in months.

Inv-grade reflects the share of investment-grade bonds in the portfolio. Floating reflects the share of floating-rate bonds in the portfolio.
Corporate reflects the share of corporate bonds in the portfolio. Weighted averages are computed using the wealth of the fund.

2.3.6 Preliminary evidence on rebalancing

If investment mandates were entirely rigid, institutional portfolios would be extremely inelastic, and the
effects of asset purchases would remain confined to targeted asset categories. However, some flexibility in
mandates may allow institutions to rebalance their portfolios in response to changing market conditions.
The onset of the COVID-19 crisis in March 2020 provides a natural experiment for assessing this flexibility:

5Or, in the case of index funds, attempt to replicate an index. Since it is extremely difficult to hold all of the bonds present in
an index, these investors are substantially more active than their stock market counterparts.
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the rapid market turmoil and unprecedented central bank interventions led to abrupt shifts in bond prices.
To test for rebalancing behavior, I estimate the effect of a wealth change induced by these price shocks on
subsequent portfolio holdings.

Let us define ⌘8,=,C the amount outstanding of holdings of issue = by investor 8 in period C, �8 the
portfolio composition of institution 8 at the end of Q1 2020, and %8,C the price vector for portfolio �8 at
time C. It follows that institution wealth is the product of its (sparse) vector of holdings with the vector of
current prices. Following Albertazzi et al. (2018), I define the wealth change faced by investor 8 subsequent
to the March 2020 shock as the dot product of the vector of scaled price changes between January 2020
and May 2020 with the holdings of institution 8 at the end of Q1 2020. That is,

<8 = �
0
8
(%8,"0H2020 � %8,�0=2020)/%8,�0=2020

I then estimate the following regression, which can be interpreted as a continuous differences-in-
differences specification for the effect of the shock on portfolio holdings6:

ln(⌘8,=,C ) = V0-=,C ⇥ <8 + V1-=,C ⇥ <8 ⇥&⇢= + V2Xn,t ⇥ mi ⇥ QEn⇥Post+
W/8,=,C + �⇢B + n8,=,C (2.6)

Where /8,=,C is a vector of investor-bond controls, -=,C a vector of bond characteristics, Post a post-shock
dummy and &⇢= an indicator for securities targeted by quantitative easing, based on rating and currency.
�⇢B denote time and fund-bond pair fixed effects.

Exogeneity of <8 relies on the fact that the wealth shock is not impacted by a change in portfolio
composition in Q1 2020 in anticipation of the March 2020 shock. The brutality of the March 2020 crisis,
and the fact that bond prices continued rising until March 6 seems to indicate that the panic set in very fast,
in a relatively unpredictable fashion. The resulting central bank interventions were swift, all-encompassing,
and of a magnitude that was absolutely unheard of. Further, bonds are relatively time-illiquid in the sense
that actively selling or buying vast quantities of bonds is slow. Thus, it is reasonable to assume that the
shock was unanticipated by the vast majority of investors, and that few if any could anticipatively adjust
their portfolio to better weather the shock.

The main intuition is as follows: if investor wealth increases due to flight-to-safety flows and central
bank purchases of safe assets, portfolio yields fall. Faced with lower portfolio yields but higher wealth,
institutions may rebalance toward riskier, higher-yield assets (“search for yield”). Conversely, following a
negative wealth shock (when average portfolio yields rise) institutions may rebalance toward safer assets
and reduce risk exposure.

The parameter V2 is the main estimate of interest, capturing the change in portfolio allocations
following a wealth shock. Table 2.3 reports a decomposition of the key interactions. Notably, a 1%
increase in portfolio wealth leads to a 0.8% decrease in QE-target holdings, and to a 0.8% increase in
non-QE-target holdings. Further, institutions significantly reallocate towards assets with a higher yield:
assets with a 100 basis points higher yield see as much as a 4.3% increase in their holdings by institutions.

6The implicit assumption here being that outside of the wealth shock, the covid shock affected investors uniformly. While
this is a strong and arguably unrealistic assumption, the purpose here is to demonstrate the existence of rebalancing rather than
to provide a fully causal estimate of the rebalancing channel. Detecting significant variation in response to the wealth shock is
sufficient for this purpose.
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Table 2.3: Portfolio Rebalancing

Dependent variable:
log Outstanding Holding

QE⇥POST 0.028⇤⇤⇤
(0.007)

Shock⇥Post 0.806⇤⇤⇤
(0.108)

Shock⇥QE⇥Post �1.616⇤⇤⇤
(0.138)

Shock⇥Yield⇥QE⇥Post 0.043⇤⇤⇤
(0.007)

QE �0.071⇤⇤⇤
(0.005)

Controls Yes
PreTrends Yes
Fixed Effects Fund Class, Time
Observations 3,641,612
Log Likelihood �7,467,433.000
Akaike Inf. Crit. 14,935,085.000
R2 0.44

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Overall, Table 2.3 supports the existence of rebalancing behavior and suggests that mandates are relatively
flexible in practice.

2.4 Empirical strategy

The approach in the previous section is a naive way to think about rebalancing. Let’s take stock of the
issues.

First, demand is assumed to be linear, which is inconsistent with standard asset pricing theory. In
reality, investors allocate across portfolios of assets and consider the relative weights of assets in their
holdings, rather than simply their linear position in any single asset.

Second, the yield of a bond is likely correlated with the standard error n . Bonds facing higher unob-
served demand will experience equilibrium price increases, which mechanically lower yields. Therefore,
the yield is negatively correlated with n , and instrumentation is required. I discuss my instrument in detail
below.

Third, substitution between different categories of bonds may not be symmetric. For example, the
high liquidity of sovereign bonds makes it easy for unspecialized funds to purchase them in the face of a
poorly performing corporate bond market. Conversely, funds specialized in sovereign bonds may find
it much harder to allocate into corporate bonds, even when yields are attractive. Moreover, investment
mandates are typically more restrictive regarding riskier assets than safe ones.

Fourth, the differences-in-differences structure of the preliminary estimating equation restricts analysis
to stable bond-fund pairs. If funds rebalance by purchasing entirely new issues, the prior approach fails to
capture this margin of adjustment.

Fortunately, demand system asset pricing provides a framework that directly addresses these concerns.
Institutions invest in portfolios and determine weights according to their strategies. Instruments arise
naturally from market clearing. The imposed demand structure allows for non-symmetric substitution
patterns at the aggregate level and enables the evaluation of the cross-impact of sovereign QE on corporate
bonds (and vice versa). Finally, the model permits changing portfolios over time, though it does abstract
from the initial decision to include a bond in a fund’s investment universe.

2.4.1 Model

For asset =, investor 8, and time C, let G8,=,C denote a vector of asset characteristics, H= the bond’s yield,
H<:C ,C the (duration-matched) treasury yield, and 1&⇢ ,=,C an indicator for whether bond = is eligible for
ECB purchases.7

Investor 8 derives indirect utility *8,=,C from asset = at time C, which depends linearly on asset charac-
teristics G8,=,C , H=, investor preferences W8:,C , V8:,C ,k8:,C , b8:,C , and market characteristics H<:C ,C , 1&⇢ ,=,C :

*8,=,C = W8:,C H= + V8:,CG8,=,C + b8:,C H<:C ,C + k8:C1&⇢ ,=,C + n8=,C

Investors choose portfolio weights proportional to the indirect utility provided by each security.
7For corporate bonds, eligibility is taken from monthly ECB holdings disclosures. For sovereigns, since the ECB does not

publish ISINs, I reconstruct eligibility using purchase criteria (ratings, currency, issuer) published by Eurosystem national central
banks.
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Under specific assumptions on the distribution of the n terms8, the model aggregates to a nested logit
structure.
Let us define F8,=,C as the portfolio weight of asset = in the holdings of institution 8 at time C. Then, we
can write portfolio weights as:

F8=,C =
4
*8=,C (1 + Õ

=2B:
4
*8=,C )[8:�1

Õ
 

;=1(1 + Õ
<2B;

4
*8<,C )[;8

(2.7)

Where
Õ
8
F8=,C = 1 and : 2 {⇠,⌧, '} denotes the nest (Corporate, Sovereign, Local),

with [8: the associated substitution parameter. [8: governs how institutions substitute away and from
the nest. The terms inside the parenthesis, I:8 = (1 + Õ

<2B:
4
*8=,C ) are called the inclusive value. The

inclusive value reflects the aggregate value of alternatives present inside the nest. The parameter [8:
governs the degree of substitution between asset classes for investor 8 and nest : , conditional on the
inclusive values. When [8: equals zero, investor 8 exhibits complete inflexibility with respect to asset
category : and does not substitute into or out of this class. In the limiting case where [8: = 0 for all : ,
the inclusive values in the denominator simplify to unity, so the portfolio allocation across the three bond
categories is fixed, and the investor’s allocation within each category depends only on the relative utilities
of assets within that category.

By contrast, when [8: = 1, investor 8 displays fully flexible substitution across nests, and the nesting
structure no longer restricts reallocation: portfolio weights respond to utility differences across all assets,
regardless of category. If, for example, [8: = 1 for both sovereign and corporate bonds, then investor 8 is
unconstrained in allocating between these classes. Finally, if [8: exceeds one, then substitution between
nests becomes more sensitive to the value of assets outside the focal nest than to the value of assets within
it. This situation characterizes the behavior of investors in cash-like or reserve assets, where portfolio
shifts across broad categories are particularly responsive to conditions in other asset classes.

2.4.2 Instrumentation and identification

Because the unobserved component of demand for bonds is jointly endogenous with prices, an additional
identifying assumption is required. In particular, given that investors often hold sizable positions in
individual bonds, it would be unreasonable to assume atomistic price-taking. As a result, it is necessary
to instrument for bond yields. I follow Koijen et al. (2020) and that the quantities and characteristics of
bonds are exogenous, consistent with the broader asset pricing literature. To build the instrument, I adapt
the approach of Koijen and Yogo (2019) and Siani (2022). For each fund 8 and bond =, the instrument is
defined as

I8 (=) = ln
 ’
9<8

� 9

1 9 (=)
1 + Õ

#

<=1 1 9 (<)

!

where � 9 denotes the wealth of fund 9 , and 1 9 (=) is an indicator equal to one if bond = is part of the
investment universe of fund 9 . To define investment universes, I group bonds into buckets based on
maturity, rating, spread, and industry. The investment universe of fund 9 is then constructed as any bond
in the same bucket as bonds currently held by the fund. Under this construction, a fund investing in a
small quantity of bonds that belong to broad buckets will have a larger investment universe than a fund

8Namely, n are univariate extreme value inside bond categories and [
:
n are generalized extreme value across bond categories,

where [
:
is a nest (categorical) substition parameter.
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holding a moderate number of bonds within a narrow bucket.
This instrument, originally proposed by Siani (2022), is empirically stronger than the one used in

Bretscher et al. (2022) and Koijen and Yogo (2019), as it better reflects the structure of actual investment
choices. Additionally, in constructing the instrument, I use the eMaxx US and Lipper-CRSP-Factset
databases to estimate latent demand, rather than using exclusively the eMaxx EU sample.

To further improve exogeneity, I augment this instrument with a term reflecting central bank demand,
which can be considered exogenous to investors’ latent demand since central bank allocations follow
predetermined rules across asset categories. The resulting instrument is

I8 (=) = ln
 ’
9<8

� 9

1 9 (=)
1 + Õ

#

<=1 1 9 (<)
+ 1⇠⌫ (=)

1 + Õ
>2j 1⇠⌫ (>)

�
E
⇠⌫

!

where E denotes an eligible asset category (such as a specific industry or maturity bucket conditional
on ratings), �E

⇠⌫
is the total market value of assets held by the central bank in category E, and 1⇠⌫ (=)

indicates whether bond = is eligible for purchase by the central bank.
A final issue concerns the definition of the scaler F8,0,C , which refers to the component of the portfolio

whose utility is normalized to one in the inclusive value term9. As in Koijen and Yogo (2019), the scaler is
defined as the set of unmatched assets, that is, assets for which price or characteristic data are unavailable
(often foreign equities). However, this definition may be less appropriate for bonds, since some funds
specialize in exotic or illiquid bonds, and the share of unmatched assets can vary substantially across
periods without reflecting changes in investment strategy.

To assess robustness, I estimate an alternative specification in which unmatched bonds are dropped,
and a randomly selected bond held throughout the observation period is used as the scaler (its utility is
normalized to one). The results and counterfactual analyses are qualitatively unchanged, and for brevity,
are not reported here. The advantage of using unmatched assets as the scaler is that it avoids excluding
observations for funds without any single bond held continuously across the sample—an issue particularly
common among funds with short-duration strategies, for which a significant share of the portfolio matures
each period.

2.4.3 Estimation procedure

The estimation proceeds in four steps.

Estimation of Time-Invariant Parameters

I begin by estimating time-invariant nest-level parameters through instrumental variables linear regression.
Recall that the portfolio weight of asset = for investor 8 at time C can be written as:

F8=,C =
exp(*8=,C )

�
1 + Õ

=2B:
exp(*8=,C )

�
[8:�1

Õ
 

;=1
�
1 + Õ

<2B;
exp(*8<,C )

�
[;8

This weight can be decomposed into a within-nest component,

F
:

8=,C
=

exp(*8=,C )
1 + Õ

<2B:
exp(*8<,C )

9recall that I:8 = 1 + Õ
< 2 B:4

*8=,C
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and a between-nest share,

,8:,C =

�
1 + Õ

=2B:
exp(*8=,C )

�
[8:

Õ
 

;=1
�
1 + Õ

<2B;
exp(*8<,C )

�
[;8

so that F8=,C = F
:

8=,C
⇥,8:,C

By construction, the share for the reference asset (the “scaler”), F:
80,C = 1/(1 +Õ

<2B:
exp(*8<,C )). It

is straightforward to see that taking the ratio of F:
8=,C

to the scaler and applying the logarithm yields a
linear relationship:

ln
 
F
:

8=,C

F
:

80,C

!
= *8=,C

where*8=,C is the investor’s indirect utility from asset = at time C, which is modeled as a linear function of
asset yield, observable characteristics, the market yield, the QE eligibility indicator, and an error term.

It is then straightforward to run an instrumental variable regression. However, before estimation, I

decompose ln
✓
F

:
8=,C

F
:
80,C

◆
into time-invariant and time-varying components to separately identify parameters

that are constant over time from those that may change across periods. Specifically, I write

ln(
F
:

8=,C

F
:

80,C
) =W̄8:,C H= + V̄8:,CG8,=,C + b̄8:,C H<:C ,C + k̄8:C1QE,n,t

+ W̃8:,C H= + Ṽ8:G8,= + b̃8:H<:C + k̃8:1QE,n + n8= (2.8)

where the terms with overbars denote time-invariant parameters and the tilded terms capture possible time
variation. For the first step of the estimation, I focus on the time-invariant component ln(F

:
8=

F
:
80
) = W̄8:H= +

V̄8:G8,= + b̄8:H<:C + k̄8:1QE,n + n8= to obtain estimates for invariant utility parameters.
Estimating only the invariant utility parameters in this step is important, as the subsequent estimation

of cross-nest substitution parameters relies on these parameters being consistently identified across periods.
By isolating the time-invariant elements, I improve the robustness and interpretability of the estimated
substitution elasticities.

Estimation of Substitution Parameters

Recall that the inclusive utility is defined as I:8 = (1 + Õ
<2B:

4
*8=,C ). I compute the inclusive utility for

each fund and each period using the time-invariant estimates I obtained during the previous step, that is I
compute

cI:8 = 1 +
’
<2B:

4

ö
*8=,C

I then follow Koijen et al. (2020) and estimate the substitution parameters through the following
regression

ln
,8:,C

,8⇠ ,C

= [:
cI:8 � [⇠

cI⇠8 + U: + b8C (2.9)

where⇠ is the reference nest. ,8:,C and,8⇠ ,C denote the inclusive values for nest : and for the benchmark
nest ⇠ (corporate bonds), respectively, and U: captures nest fixed effects.
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Estimation of Time-Varying Parameters

Next, I re-estimate time-varying nest-level parameters, such as the time-varying QE demand shifter, using
generalized method of moments (GMM). The key moment condition is that the error term is orthogonal
to the instrumented bond yield and characteristics:

E(n8= | Ĥ8=,C , G8,=,C ) = 0

GMM estimation is required in this step, as it accommodates the case where F8=,C = 0, for which the
logarithm is undefined and would otherwise force dropping these observations. Joint estimation of all
time-varying parameters and nest parameters is computationally infeasible due to dimensionality; instead,
substitution parameters are held constant. Allowing the nest substitution parameter to vary over time
would be inconsistent with its interpretation as a structural mandate parameter.

Counterfactuals and Elasticities

With the full set of estimated parameters, I use the model to compute counterfactual outcomes and
elasticities following the methods of Koijen and Yogo (2019) and Bretscher et al. (2022). The equilibrium
price vector is found as a fixed point:

p = f (p) = ln
 ’
8

�8w8 (p)
!
� ln(Q)

where p is the vector of bond prices, �8 is investor wealth, w8 is the portfolio weight vector for investor 8,
and Q is the vector of bond quantities outstanding.

I depart from previous work by not using a zero-coupon yield approximation. Instead, I recover
implied yields by numerically solving for the root of the pricing equation (using Newton’s method),
matching each model-implied price to its corresponding yield. For perpetual bonds, the yield is computed
as the coupon divided by price.

Individual-level demand elasticities are computed as:

�mq8,C
mpC

= I � V80,C diag(w8,C )�1
⇣
diag(w8,C ) � w8,Cw0

8,C

⌘

The aggregate elasticity matrix is:

�mqC
mpC

= I �
’
8

V80,C�8,C

 ’
8

�8,Cdiag(w8,C )
!�1 ⇣

diag(w8,C ) � w8,Cw0
8,C

⌘

The price impact of a demand shock is computed either via the coliquidity matrix as defined by Koijen and
Yogo (2019) or by mapping the aggregate model of Gabaix and Koijen (2021). Details of the mapping are
provided in Appendix 2.B.2, and the results are comparable under both approaches.

2.4.4 Estimation Using Flows Rather Than Stocks

The estimation procedure is analogous when flows (i.e., trades) are used in place of holdings. The flow
instrument is described in Appendix 2.B.1. While second- and third-stage parameter estimates are similar
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in magnitude, estimated elasticities and price impacts are somewhat higher (elasticity) and lower (price
impact) when using flows. This is intuitive, as flow-based estimation conditions on actual trading behavior,
which by construction reflects greater elasticity than the unconditional (stock) case.

2.4.5 Asset Characteristics and Fund Details

The set of asset and fund characteristics included in the estimation is as follows:

• A yield instrument.

• A central bank purchase target variable

• The 5-years cumulative default probability mapped from the ratings, following Koijen & sal (2016).

• The Macaulay duration

• Amount outstanding (log)

• Bid-ask spread

• A fixed coupon dummy

• An in-default dummy

The distributions of these characteristics across bond categories are detailed in Tables 2.7 to 2.9. Table 2.10
describes the fund composition in the sample: notably, 34% of funds invest in multiple markets. Since
multi-market data are observed only for European funds (roughly half the sample), this share is sizable
and underlines the need to allow for substitution between markets in demand estimation.

2.5 Results

The average coefficients for the time-varying parameters at the quarter-fund type level are displayed in
Appendix 2.D.

2.5.1 Evidence of Frontloading

Recall that the estimated utility of investor 8 for bond = at time C is given by

*8,=,C = W8:,C Ĥ= + V8:,CG0BB4C ,=,C + b8:,C H<:C ,C + k8:C1&⇢ ,=,C + n8=,C ,

where k8:C captures the demand anomaly for bonds targeted by central bank purchases, at the fund-time
level.
A crude way to gauge whether or not there is evidence of frontloading is to regress k8:C on a quarterly
dummy 1&⇢4G?,C , with

1&⇢4G? =

8>>>>><
>>>>>:

1 if CB announced an expansion of purchases

�1 if CB announced a decrease of purchases

0 otherwise
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The results of this crude regression are presented in table 2.4

Table 2.4: Frontloading dummy regression.

Dependent variable:
k8,C ,⇠

QE Expansion 0.26⇤⇤⇤
(0.032)

Observations 63550
FE Yes
R2 0.27

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

A significant positive coefficient on this indicator provides evidence that institutional investors front-
load in response to policy announcements. The results are presented in Table 2.4.

2.5.2 Mandate Flexibility

Table 2.5 presents the estimates of cross-nest substitution parameters ([:) for different investor sectors,
derived from the second-stage regression. Several features emerge. Insurance companies exhibit much
lower elasticity across investment categories than mutual funds or pension funds, reflecting the stricter
regulatory constraints they face. For all sectors, the elasticity with respect to the corporate bond share is
much lower than for sovereign or regional bonds, indicating that institutional mandates are especially rigid
regarding corporate bonds. This supports the view that the corporate bond market is somewhat segmented
from the sovereign market, and helps rationalize the ECB’s decision to target corporate bonds directly
through asset purchases.

Large mutual funds display the most flexible mandates concerning corporate bonds, implying that
they provide liquidity when market conditions shift. This finding echoes the results of Koijen and Yogo
(2019) and Bretscher et al. (2022). For these large funds, regional and local bonds appear to function as
cash-equivalent or reserve assets, while for small mutual funds and pension funds, sovereign bonds serve
this role. This likely reflects specialization among some large funds in sovereign debt. Strikingly, the
estimate [⌧ > 1 for small mutual funds suggests that sovereign bond holdings are used as an adjustment
variable, consistent with the intermediary asset pricing literature.

2.5.3 Price impact of purchases

Due to limited coverage of the sovereign bond market in my data, I focus on estimating price impacts
and counterfactuals for corporate bonds. Table 2.6 summarizes the results. The estimated price elasticity
for corporate bonds is 0.75 for mutual funds and 2 for the market as a whole, indicating that mutual
funds make the market less elastic. A complete reversal of central bank asset purchases would reduce the
average corporate bond price by 25%, corresponding to an average increase in spreads of approximately
280 basis points. Notably, about one-fifth of the total price decrease can be attributed to spillovers from
the sovereign market, despite the much larger scale of sovereign purchases. This suggests that purchases
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Table 2.5: The first stage regression determines the intra-node parameters, while the second stage,
presented here, yields the parameters that determine the substitution between nodes. The other sector
aggregates pension funds and variable annuity funds.

Dependent variable:
regressor

Large Mutual Funds Small Mutual Funds Other (pension) Insurance
[
⇠

0.235⇤⇤⇤ 0.124⇤⇤⇤ 0.120⇤⇤⇤ 0.126⇤
(0.008) (0.001) (0.003) (0.076)

[
⌧

0.572⇤⇤⇤ 1.137⇤⇤⇤ 0.921⇤⇤⇤ 0.355⇤⇤⇤
(0.015) (0.005) (0.019) (0.027)

[' 0.943⇤⇤⇤ 0.757⇤⇤⇤ 0.384⇤⇤⇤ 0.474⇤⇤⇤
(0.037) (0.011) (0.038) (0.069)

U
⌧

0.335⇤⇤⇤ 1.059⇤⇤⇤ 1.247⇤⇤⇤ 0.387⇤⇤⇤
(0.053) (0.010) (0.048) (0.106)

U' �1.400⇤⇤⇤ �2.051⇤⇤⇤ �2.237⇤⇤⇤ �4.331⇤⇤⇤
(0.100) (0.017) (0.091) (0.093)

Observations 3,857 64,818 3,949 1,186
R2 0.671 0.654 0.724 0.722
Adjusted R2 0.670 0.654 0.723 0.721
Residual Std. Error 2.227 1.765 1.614 1.985
F Statistic 1,568.528⇤⇤⇤ 24,500.960⇤⇤⇤ 2,065.344⇤⇤⇤ 612.982⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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targeted at the corporate bond market are particularly efficient at transmitting monetary policy to firms.

Table 2.6: Price impact and elasticities.

Price Impact:
Coliquidity Estimate GK Mapping

Aggregate price elasticity 0.8 1.3
Price Impact: Reversal of purchases
All purchases Corporate only

Average price decrease 25.2% 19.7%
Price Impact: Estimation using trades
Coliquidity Estimate GK Mapping

Aggregate price elasticity 0.2 0.45

The Gabaix and Koijen mapping is as described in the appendix.

2.6 Conclusion

Empirical estimates confirm three key predictions of the stylized model. First, the price impact of central
bank purchases is significantly greater for corporate bonds than for sovereign bonds, reflecting both
higher risk and lower risk-tolerance wealth in the corporate segment. Second, institutional portfolios
exhibit evidence of front-loading, as investors reallocate in anticipation of announced interventions. Third,
mandate flexibility varies sharply across sectors: mutual funds display high cross-category substitution,
while insurance companies and pension funds exhibit considerably more rigid mandates. These findings
reinforce the importance of investor heterogeneity and mandate constraints in shaping the transmission of
monetary policy through credit markets.

2.6.1 Avenues for improvement

There are two main concerns that I wish to address. The first is the instability of point estimates in both
the initial and final stages of estimation, as shown in Tables 2.11 and 2.12: when running regressions
on the subsample of US corporates alone for large funds, we can obtain negative yield coefficients.
This instability is primarily due to multicollinearity: yield, spread, duration, and credit risk are highly
correlated, while the available instruments are only weakly informative. As a result, estimated coefficients
are sensitive to relatively minor changes in model specification, with occasional sign reversals. While the
use of trades rather than holdings attenuates this issue, it does not fully resolve it. Importantly, because
the identification of inclusive values is less affected by collinearity, the second-stage estimates and the
coefficients on exogenous dummies (such as the purchase target) remain robust. Nonetheless, the overall
credibility of the methodology is weakened by this feature of bonds.

Second, counterfactual simulations present very different results depending on the assumptions made
on the residual sector. The magnitude of simulated price effects is highly sensitive to the treatment of the
residual sector. If this sector is assumed to operate in all segments of the bond market (e.g., corporates,
sovereigns, euros, dollars, foreign bonds), its size and substitutive capacity greatly attenuate any simulated
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policy shocks. Conversely, if the residual sector is artificially restricted (as is common in the literature) to
only trade European corporates, the estimated price impacts become implausibly large. With a ”balanced”
residual sector, that holds only the bonds European funds are holding, market clearing yields a 25% price
impact. However, this is not a robust estimate. When considering US funds, there seems to be a pipeline
from EU bonds to US bonds that also dampens the impact of QE. This raises the possibility that the
model could be improved by using finer nesting structures to distinguish between EU, US, and other bond
markets, or between investment-grade and high-yield bonds. More carefully designed nests may yield
more reliable counterfactuals.

A further avenue is to abandon the structural demand system in favor of reduced-form regressions
based on demand flow instruments, following Chaudhary et al. (2022). This approach would directly
estimate the cross-elasticity of demand between relevant bond portfolios (e.g., corporate vs. sovereign, EU
vs. US), and would also provide a transparent test for front-loading. While such regressions would forgo
the richer structure of the full demand system, they could offer more stable and interpretable estimates of
key elasticities and policy effects.
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2.A Model Appendix

2.A.1 Dead-Weight Loss and Arbitrageur Profit (exact)

Inverse demand %(�)

Given aggregate demand � (%) from equation (2.2), the market-clearing price as a function of free float
� is found by solving � = � (%) for %. This leads to a quadratic equation in the normalized price %/2:
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The economically relevant (positive) solution is
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(2.10)

This expression characterizes the equilibrium price given any free float � and model parameters.

Which expectations matter? At the time of the policy announcement (C = 0), investors are already
aware that the central bank will reduce the available free float by @, and that the post-purchase market-
clearing price will be %1. Accordingly, during the execution window—when the free float declines from
its initial level ( to its post-intervention level ( � @—investors form expectations with the knowledge of
the eventual new equilibrium.

At any intermediate float level � 2 (( � @, (), investors evaluate trades based on the expected one-
period payoff, conditional on the anticipated post-purchase price %1. Specifically, the expected mean and
variance of returns at price % are:

`%1 (%) =
(1 � X) (2 + %1)

%

� 1 � d,

f
2
%1
(%) = (1 � X)X

✓
2 + %1
%

◆2

Investor demand at each intermediate stage is therefore forward-looking, reflecting the fact that both
mean and variance expectations are anchored on the anticipated post-purchase price %1.

Central-bank cost (execution window). During the execution window C 2 (0+, 1), the central bank
purchases @ bonds, reducing the free float from � = ( down to � = ( � @. Investors, anticipating the
post-purchase equilibrium price %1, adjust their demand accordingly. At any float level � in this window,
the aggregate demand as a function of price is

�1(%) =
^ %

⇥
(1 � X) (2 + %1) � (1 + d)%

⇤
X(1 � X) (2 + %1)2 ,
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and market clearing �1(%) = � yields

%exec(�) = 2 + %1
2
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1 + d

h
1 +

s
1 � 4 X(1 + d)

^(1 � X) �

i
.

The central bank’s total cost for the purchase is given by integrating the execution price as the float falls
from ( to ( � @:

U =
4 X (1 + d)
^ (1 � X) ,

Then the CB’s exact outlay is

CB cost =
π

(

�=(�@
%exec(�) d� =
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2
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1 + d


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3U
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(2.11)

Finally, the dead-weight loss to the taxpayer from the intervention is

DWL = CB cost � @ %
¢

.

where %¢ is the pre-intervention equilibrium price.

2.A.2 Arbitrageur Profit

Risk–tolerance distribution and cut-off rule. Let individual risk capacity be : := ,/_ and assume
: ⇠ Uniform[0, 2^] so that aggregate wealth is

Ø 2^
0 :

3:

2^ = ^. Holdings before the announcement are
⌘
¢(:) = : 5

¢ with 5
¢ = `(%¢)/f2(%¢). After the announcement investors value the bond using the

future execution price %1, giving ⌘
0(:) = : 5̃ with 5̃ = `%1 (%0)/f2

%1
(%0). Because both schedules are

linear in : they intersect once:
⌘
¢( :̄) = ⌘

0( :̄) =) :̄ = ^ .

Thus investors with : > :̄ (upper half of the continuum) accumulate bonds at C = 0; they are the natural
arbitrageurs and we denote their set by A. Those with : < :̄ sell and form the set N .

Volume that changes hands at the announcement. Positive flow into A is

b =
π 2^

:=^

⇥
⌘

0(:) � ⌘
¢(:)

⇤ 3:
2^ = ( 5̃ � 5

¢) ^2 .

Because the central bank will buy @ at C = 1, market clearing between dates implies b = @. Hence all
bonds the CB will purchase tomorrow are already re-allocated within the private sector today.

Exact trading profit. Arbitrageurs pay the flat announcement price %0 for the b = @ bonds, ⇠buy = @%0.

During the execution window the central bank reduces the free float from ( to ( � @; arbitrageurs are the
unique counterparties, collecting

'sell =
π

(

(�@
%exec(�) 3�

�
see (2.11)

�
.
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Their round-trip profit is therefore
⇧arb = 'sell � @%0 > 0 (2.12)

Wealth transfers. Write (¢A = 3
4( and (¢N = 1

4( for the pre-announcement inventories (uniform-: case).
After the period-0 rebalancing the groups hold

(
0
A = 3

4( + @, (
0
N = 1

4( � @.

At C = 1 the arbitrageurs unwind those @ bonds to the central bank, leaving (
1
A = 3

4( and (
1
N = 1

4( � @

while the private float becomes ( � @.

Wealth transfers (uniform-: case). Let

⇧arb :=
π

@

0
%exec(( � G) 3G � @%0

⇣
0 < ⇧arb < @ (%1 � %0)

⌘

denote the arbitrageurs’ round-trip trading profit. Then the exact wealth changes from the pre-announcement
benchmark (C = �) to the close of execution (C = 1) are

�,N = 1
4( (%0 � %

¢) +
� 1

4( � @

�
(%1 � %0)

= 1
4( (%1 � %

¢) � @ (%1 � %0),

�,A = 3
4( (%0 � %

¢) + 3
4( (%1 � %0) + ⇧arb

= 3
4( (%1 � %

¢) + ⇧arb.

Summing the two rows gives

�,N + �,A = ( (%1 � %
¢) + ⇧arb � @ (%1 � %0),

which is exactly the aggregate mark-to-market gain for the private sector.

2.A.3 Proof: downward slope & root uniqueness

Downward slope. Using (2.2) write

m�

m%

=
^

X(1 � X)
2

⇥
(1 � X)2 � (1 + X + 2d)%

⇤
(2 + %)4 .

Because equilibrium % (minus – root) always exceeds (1�X )2
1+X+2d , the bracket is negative, hence m�/m% < 0,

i.e. the inverse-demand curve is strictly downward sloping.

Root uniqueness. Clearing � (%) = ( multiplies to a quadratic in H = 1 + 2

%
: 0H

2 � H + ⌅ = 0
with 0 = (X/^ 2 (0,⌅/4) and ⌅ = 1+d

1�X . The discriminant is positive, giving two roots H±. Because
% = 2/(H � 1) is decreasing in H, only the minus root H� 2 (⌅/2,⌅) always yield a positive finite price.
Thus, the equilibrium is unique.
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2.B Supplemental details and proofs

2.B.1 Flow instruments

When running the estimation using flows instead of stocks, I use an instrument based on a flow-of-funds
like measure à la Gabaix & Koijen. That is,

/C = �@(C � �@⇢C

Where @
⇢ ,M,C

= 1
#

Õ
@
8,M,C

and @
(,M,C

=
Õ

&8,<,CÕ
8 &8,M,C

@
8,M,C

, with @
8,M,C

the change in asset category
M (based on the aforementioned buckets) demand for investor 8 and &8 is the share of asset category held
by investor 8. These shifters can then be used as instruments for the demand of bond = 2 M.

2.B.2 Mapping with Gabaix-Koijen market-wide price elasticity

Recall that in Gabaix and Koijen (2021), we have for : an asset class, %: a price index, &8: the quantity
of asset class : held by fund 8 with wealth,8 , and ĉ: the expected excess return for asset class ::

%:&8:

,8

= \8: .4
^8: ĉ8:

Where \8: is the baseline fraction of asset category : fund 8 is mandated to hold, and ^ a positive
coefficient denoting how much the fund is allowed to deviate from the baseline to chase for returns.

Consider that in the nested logit model,

%:&8:

,8

=
’
=2:

4
*8=,C (1 + Õ

=2B:
4
*8=,C )_8:�1

Õ
 

;=1(1 + Õ
<2B;

4
*8<,C )_;8

= \8: .4
^8: ĉ8:

Which rewrites WLOG as

%:&8:

,8

=
(Õ

=2B:
4
*8=,C )_8:Õ

 

;=1(
Õ
<2B;

4
*8<,C )_;8�1

(2.13)

This yields

\8: .4
^8: ĉ8:

\8; .4
^8; ĉ8;

=
(Õ

=2B:
4
*8=,C )_8:

(Õ
=2B;

4
*8=,C )_;8 (2.14)

Note that we can always decompose*8 9 as

*8 9 = *̃8: + *̄8 9

Where *̄8: is the (time-invariant) average utility from any alternative 9 2 ⌫: , i.e. the average utility of an
option in ⌫: . *̃8 9 is a deviation from this baseline.
Then, l:8 = (Õ

=2B:
4
*8=,C )_8: rewrites

l:8 = (
’
=2B:

4
*̄8:+*̃8=,C )_8:

l:8 = 4
_8:*̄8: (

’
=2B:

4
*̃8=,C )_8:
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We can interpret *̃8 9 in terms of asset pricing as a sum of signals for future asset returns. It can be
decomposed as the average signal times the number of elements in the set ⌫:

l:8 = 4
_8:*̄8: (

’
=2B:

#:

4
*̃8=,C

#:

)_8:

= 4
_8: (*̄8:+ln(#: ) )

4
_8: ln(Õ=2B:

4
*̃8=,C
#:

) (2.15)

Replacing 2.15 into 2.14, we get

\8: .4
^8: ĉ8:

\8; .4
^8; ĉ8;

=
4
_8: (*̄8:+ln(#: ) )

4
_8: ln(Õ=2B:

4
*̃8=,C
#:

)

4
_8; (*̄8;+ln(#; ) )4

_8; ln(Õ=2B;
4
*̃8=,C
#;

)
(2.16)

Replacing 2.15 into 2.13, we get

%:&8:

,8

= \8: .4
^8: ĉ8: =

4
_8: (*̄8:+ln(#: ) )

4
_8: ln(Õ=2B:

4
*̃8=,C
#:

)

Õ
 

;=1 4
(_;�1) (*̄8;+ln(#< )+ln(Õ<2;

4*̃8<
#<

) )

If we map *̃8= as a signal of ĉ, and using a taylor expansion around ln
Õ(...), this leaves us with

\8: =
4
_8: (*̄8:+ln(#: ) )Õ

 

;=1 4
(_;�1) (*̄8;+ln(#< ) )

And

4
^8: ĉ8: ⇡ 4

_8: ln(Õ=2B:
4
*̃8=,C
#:

)

Under some assumptions (namely that *̃8= ⇠ U[0, 24 ĉ]), then E
Õ
4
*̃8=/# is by the Central Limit

Theorem roughly normally distributed with mean 4
ĉ and variance f2/# and E(ln Õ

4
*̃8=/# is a slightly

biased down estimate of ĉ.
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2.C TABLES

Table 2.7: Corporate Bonds

Statistic N Mean St. Dev. Min Max
Mid Yield 1,037,127 3.400 3.792 �0.801 32.130
DefaultProba 954,191 4.496 7.951 0.083 100.000
Spread 1,028,748 0.612 0.839 0.000 8.012
duration 1,036,239 7.325 5.252 0.613 26.000
FLOATING 1,053,564 0.051 0.221 0 1
Default 954,191 0.002 0.043 0 1
logMkt 989,046 12.914 1.590 4.242 17.477

Table 2.8: Government Bonds

Statistic N Mean St. Dev. Min Max
Mid Yield 139,593 2.550 3.543 �0.801 32.130
DefaultProba 119,229 2.487 5.136 0.000 100.000
Spread 137,076 0.511 0.730 0.000 8.012
duration 139,322 8.683 5.836 0.613 26.000
FLOATING 139,889 0.011 0.106 0 1
Default 119,229 0.001 0.037 0 1
logMkt 130,215 14.028 2.519 4.242 20.571

Table 2.9: Regional Bonds

Statistic N Mean St. Dev. Min Max
Mid Yield 19,884 1.760 3.396 �0.801 32.130
DefaultProba 14,750 0.884 4.381 0.000 100.000
Spread 20,453 0.528 0.700 0.000 8.012
duration 19,807 9.294 5.896 0.613 26.000
FLOATING 20,918 0.026 0.160 0 1
Default 14,750 0.003 0.053 0 1
logMkt 19,203 12.899 1.695 4.242 17.411

Table 2.10: Individual Fund Observations

Statistic N Mean St. Dev. Min Max
Wealth 180,842 598,636.900 3,784,246.000 0.003 417,083,766.000
multimarket 180,842 0.342 0.474 0 1
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Table 2.11: This table shows the result of the first stage estimation for a subsample of the dataset, using an IV for the yield. The odd columns use Siani (2022) bond
class instrument, and the even columns use Bretscher et al. (2022) instrument, with latent demand computed at the bond level. Column 3 and 4 instrument the
Spread with the number of of current holders of the bond, and column 5 uses the 5-year default probability instead of the linear rating scale. The sample only
includes large mutual funds and only includes bonds in the WRDS database to alleviate data collection concerns.

Dependent variable:
log Relative Share : Market Value

Bond Class Instrument Indiv Bond Inst BC Instrumtd Spread IB Instrumtd Spread BC nonlin default IB nonlin default
Yield �0.181⇤⇤⇤ 0.870⇤⇤⇤ �0.126⇤⇤⇤ 0.641⇤⇤⇤ �0.682⇤⇤⇤ �0.772⇤⇤⇤

(0.002) (0.016) (0.002) (0.010) (0.010) (0.012)

Duration 0.182⇤⇤⇤ �0.518⇤⇤⇤ 0.185⇤⇤⇤ �0.366⇤⇤⇤ 0.528⇤⇤⇤ 0.590⇤⇤⇤
(0.001) (0.011) (0.002) (0.006) (0.007) (0.008)

Outstanding 0.744⇤⇤⇤ 0.686⇤⇤⇤ 0.724⇤⇤⇤ 0.698⇤⇤⇤ 0.743⇤⇤⇤ 0.744⇤⇤⇤
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Ratings �0.672⇤⇤⇤ 3.469⇤⇤⇤ �0.526⇤⇤⇤ 2.569⇤⇤⇤
(0.008) (0.063) (0.009) (0.038)

DefaultProba 0.141⇤⇤⇤ 0.160⇤⇤⇤
(0.002) (0.002)

B-A Spread 0.102⇤⇤⇤ �0.877⇤⇤⇤ �0.170⇤⇤⇤ �0.664⇤⇤⇤ 0.587⇤⇤⇤ 0.673⇤⇤⇤
(0.002) (0.015) (0.010) (0.009) (0.010) (0.011)

Observations 7,310,753 7,310,753 7,310,753 7,310,753 7,310,167 7,310,167
R2 0.179 �0.916 0.192 �0.418 �0.341 �0.503
Adjusted R2 0.179 �0.916 0.192 �0.418 �0.341 �0.503

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 2.12: This table shows the result of the first stage estimation for a subsample of the dataset, using an IV for the yield. The odd columns use Siani (2022) bond
class instrument, and the even columns use Bretscher et al. (2022) instrument, with latent demand computed at the bond level. Column 3 and 4 instrument the
Spread with the number of of current holders of the bond, and column 5 uses the 5-year default probability instead of the linear rating scale. The sample only
includes large mutual funds and only includes bonds in the WRDS database to alleviate data collection concerns.

Dependent variable:
log Relative Share : Outstanding amount

Bond Class Instrument Indiv Bond Inst BC Instrumtd Spread IB Instrumtd Spread BC nonlin default IB nonlin default
Yield �0.117⇤⇤⇤ 1.480⇤⇤⇤ �0.138⇤⇤⇤ �1.884⇤⇤⇤ �0.475⇤⇤⇤ �1.242⇤⇤⇤

(0.002) (0.023) (0.002) (0.072) (0.009) (0.016)

Duration 0.098⇤⇤⇤ �0.967⇤⇤⇤ 0.051⇤⇤⇤ 0.782⇤⇤⇤ 0.346⇤⇤⇤ 0.872⇤⇤⇤
(0.001) (0.015) (0.002) (0.033) (0.006) (0.011)

Outstanding 0.765⇤⇤⇤ 0.677⇤⇤⇤ 0.792⇤⇤⇤ 1.075⇤⇤⇤ 0.765⇤⇤⇤ 0.775⇤⇤⇤
(0.001) (0.002) (0.001) (0.011) (0.001) (0.001)

Ratings �0.449⇤⇤⇤ 5.837⇤⇤⇤ �0.424⇤⇤⇤ �6.538⇤⇤⇤
(0.008) (0.089) (0.008) (0.258)

DefaultProba 0.100⇤⇤⇤ 0.262⇤⇤⇤
(0.002) (0.003)

B-A Spread 0.105⇤⇤⇤ �1.374⇤⇤⇤ 0.462⇤⇤⇤ 4.471⇤⇤⇤ 0.449⇤⇤⇤ 1.182⇤⇤⇤
(0.002) (0.021) (0.010) (0.152) (0.009) (0.015)

Observations 7,347,345 7,347,345 7,347,345 7,347,345 7,346,759 7,346,759
R2 0.204 �2.886 0.184 �5.590 �0.063 �1.779
Adjusted R2 0.204 �2.886 0.184 �5.590 �0.063 �1.779
Residual Std. Error 1,702.256 3,760.786 1,723.897 4,897.711 1,967.480 3,180.466

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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2.D Means of third stage parameters
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2.D.2 Purchase target
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2.D.3 Spread
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2.D.4 Duration
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2.D.5 Default Risk
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